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Abstract. We consider a class of unstable surface growth models, ∂tz = −∂xJ , developing a mound
structure of size λ and displaying a perpetual coarsening process, i.e. an endless increase in time of λ.
The coarsening exponents n, defined by the growth law of the mound size λ with time, λ ∼ tn, were
previously found by numerical integration of the growth equations [A. Torcini, P. Politi, Eur. Phys. J.
B 25, 519 (2002)]. Recent analytical work now allows to interpret such findings as finite time effective
exponents. The asymptotic exponents are shown to appear at so large time that cannot be reached by
direct integration of the growth equations. The reason for the appearance of effective exponents is clearly
identified.

PACS. 81.10.Aj Theory and models of crystal growth; physics of crystal growth, crystal morphology, and
orientation – 02.30.Jr Partial differential equations

1 Introduction

In this manuscript we are interested in studying a class of
one dimensional growth equations, having the conserved
form ∂tz = F − ∂xJ : the dynamics of the local height
z(x, t) of the surface is determined, apart from a trivial
constant term F describing the deposition flux, by the
processes occuring at the surface, which are all included
in the surface current J [1,2]. Possible noise sources, shot
noise first, will be neglected.

The current J may have a plethora of different forms,
depending on the details of the atomistic processes [3].
For Molecular Beam Epitaxy [4,5], a widely used tech-
nique for growing metal and semiconductor thin films with
nanoscale control, one of the most studied equations has
the form [1,5]

∂tz = −∂x(uxx + j(u)) (1)

where the constant term F has been included in the left
hand side by redefining z = z−Ft, and u = zx = ∂xz is the
slope of the surface. It is worth noting that taking the spa-
tial derivative of both sides, we get ut = −∂xx(uxx+j(u)),
i.e. a generalized Cahn-Hilliard equation [6]. Without
the double derivative (−∂xx) we get the corresponding
non-conserved models, called generalized real Ginzburg-
Landau (or Allen-Cahn) equation [6]. In summary, we are
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considering the two classes of equations

ut = −∂xx(uxx + j(u)) conserved (2)
ut = uxx + j(u) non-conserved. (3)

The linear stability analysis of the flat interface, z = z0 +
ε exp(ωt + iqx), can be easily applied to equations (2, 3)
giving

ω = j′(0)q2 − q4 conserved (4)
ω = j′(0) − q2 non-conserved, (5)

so that an instability appears (i.e. ω(q) > 0 for some
q) if j′(u = 0) > 0. Without loss of generality, we may
assume j′(0) = 1. The steady states are determined by
the equation uxx = −j(u) both in the conserved (2) and
non-conserved (3) case. The solutions u(x) correspond to
the trajectories of a fictitious particle moving in the sym-
metric potential V (u) =

∫
du j(u) = 1

2u2+ higher order
terms. The oscillations in the potential well correspond to
periodic steady states of the variable u, with wavelength
λ and amplitude A.

The study of the stationary periodic solutions is of
great importance for the dynamics as well. In reference [7],
for equations (2, 3) and other classes of models, it has been
shown that the surface undergoes a coarsening process if
and only if dλ/dA > 0. In simple words, the wavelength
of the mound structure (emerging from the linear insta-
bility) increases in time if the wavelength λ(A) of the pe-
riodic steady state increases with the amplitude A. Even
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more importantly, the knowledge of the stationary peri-
odic solutions allows to determine [6] the coarsening law
λ(t) (see the next section for more details).

2 Numerics vs. analytics

In the following we are focusing on a class of models de-
fined by the currents

j(u) =
u

(1 + u2)α
, (6)

which correspond to the potentials

V (u) = − 1
2(α − 1)

1
(1 + u2)α−1

. (7)

They were introduced in a previous paper on this jour-
nal [8] and were called α−models.

It is straightforward to check that V (u) has a min-
imum in u = 0 and goes to zero for large u, as
V (u) ∼ −1/|u|2(α−1). The curves λ(A) can be found nu-
merically, but the sign of dλ/dA can be easily deduced
from the behavior of V (u) at small and large u. At small
u, V (u) ≈ V (0) + 1

2u2 − α
4 u4, so that the quartic term

is negative. At large u, V (u) increases and goes to a con-
stant value. Both these features are signatures [10] for a
positive dλ/dA, i.e. for a perpetual coarsening.

2.1 Old results

In reference [8] we studied the coarsening exponent
n (λ(t) ∼ tn) for the α−models. The non-conserved ver-
sion, equations (3, 6), allowed for an analytical treatment
which followed an approach due to Langer [9]: it consists
in evaluating the most unstable eigenvalue of the linear
operator describing perturbations of the periodic station-
ary solution. This method gave the results

n =
{

1
2 α < 2
α

3α−2 α > 2 non-conserved (Ref. [8]) (8)

The conserved version, equations (2, 6), of α−models did
not allow for an equally rigorous approach. Therefore, we
integrated numerically [8] the growth equations ∂tz =
−∂xJ : it appeared that coarsening exponents agreed fairly
well with the relations

n =
{

1
4 α < 2
α

5α−2 α > 2 conserved (Ref. [8]). (9)

These results were interpreted by doing the following
ansatz: “as for the coarsening exponent, passing from the
non-conserved to the conserved models is equivalent to re-
place (−∂xx) in equation (2) with 1/λ2.” This recipe al-
lows to get the conserved coarsening exponents (9) from
the non-conserved ones (8) in a straightforward manner.
The previous picture appeared to be reasonably correct
until a more general analytical approach [6] has been re-
cently developed.

2.2 New results

This new theory relies on the observation that the coars-
ening law λ(t) can be extracted from the so-called phase
diffusion coefficient, which describes the dynamics of the
local phase, when the periodic stationary solution is per-
turbed. This approach is applicable to large classes of
models, both conserved and non-conserved. As for the
α−models, λ(t) is deduced from the relations [6]

j(A)
I λ′(A)

∼ 1
t

conserved models (10)

j(A)
J λ′(A)

∼ 1
t

non-conserved models. (11)

In equations (10, 11), all the quantities refer to the peri-
odic steady states, u(x + λ) = u(x), satisfying the equa-
tion uxx + j(u) = 0: A is the amplitude (the maximal
positive value of u(x)); λ is the oscillation period (i.e. the
wavelength) and λ′(A) is its derivative with respect to A;
J is the action variable, defined by J =

∮
dxu2

x; finally,
I =

∮
dxu2.

For large A, we can split the motion of the ficti-
tious particle in the potential V (u) in a region close
to the origin, |u| < A0, and in the complementary re-
gions A0 < |u| < A. A0 is chosen so that in the re-
gions |u| > A0, j(u) and V (u) can be approximated
by their asymptotic expressions j(u) � 1/|u|2α−1 and
V (u) � − 1

2(α−1) |u|−2(α−1).
Since V (A) goes to a constant for diverging A, the

motion of the particle in the small u region (|u| < A0)
does not depend on A. Therefore, every integral quan-
tity (λ, I, J) is the sum of a constant term, coming from
the integration in the small u region, and an asymptotic
A−dependent term, coming from the integration in the
large u region. In all cases (with one exception, see below)
the asymptotic contribution diverges with A and therefore
dominates. Such contribution can be evaluated by dimen-
sional arguments and, more rigorously, using the law of
mechanical similarity [11]. For example, λ(A) can be sim-
ply deduced equating the ‘acceleration’ A/λ2 to the ‘force’
j(A) ∼ 1/A2α−1, therefore getting λ ∼ Aα. Similarly, we
get I ∼ λA2.

As for J , the asymptotic contribution amounts to
λ(A/λ)2 ∼ A2−α, which diverges for α < 2 only. For
α > 2 (this is the exception mentioned above) the asymp-
totic contribution of J vanishes, indicating that the small
u region, giving a constant contribution, dominates. In
conclusion, J ∼ A2−α for α < 2 and J ∼ 1 for α ≥ 2.

If we replace the previous relations in equa-
tions (10, 11), we get equations (8) for the non-conserved
models, but we get a constant coarsening exponent, n = 1

4 ,
for the conserved models, in sharp contrast with equa-
tion (9). In conclusion, the Langer-type approach and the
recent theory based on the phase diffusion coefficient give
the same results (8) for the non-conserved α−models. For
the conserved models, where the Langer-type approach is
not applicable, the recent theory seems not to agree with
the numerical results (9) found in reference [8] via direct
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Fig. 1. The coarsening law λ(t) for the conserved model α = 3,
as derived by equation (10) after numerical determination of
the steady states u(x). Full and dashed lines refer to the asymp-
totic fit and to the fit in the region λ ≈ 102, respectively. Inset:
The quantity I/λ2 as a function of λ, for the same conserved
model.

numerical integration. This disagreement also calls for re-
considering the ansatz (−∂xx) → 1/λ2. Next section
is devoted to understand the origins of this discrepancy
(therefore, we will limit to α > 2).

3 The origin of the effective exponents

First of all, let us determine numerically λ(t) from equa-
tion (10) at all times. Results for α = 3 are shown as circles
in Figure 1 (main). The direct integration of the growth
equation was performed in reference [8] up to λ ≈ 102. A
numerical fit in this region (dashed line) gives an effective
exponent n = 0.231, which is in perfect agreement with
such simulations and with the relation n = α/(5α − 2).
Conversely, a fit in the asymptotic region (full line) gives
n = 0.25, as expected. The numerical results found in [8]
are therefore interpreted as finite-time exponents: formu-
las (9) are applicable up to λ ≈ 102, but the asymptotic
exponent for the conserved model is 1

4 .
Let us now discuss the origin of such finite-time expo-

nents. As discussed in the previous Section, formulas (9)
are correct insofar as the ansatz (−∂xx) → 1/λ2 is cor-
rect. Its validity corresponds to say that

(
1
t

)

conserved

∼ 1
λ2

(
1
t

)

non−conserved

. (12)

If we focus on our exact relations (10, 11), this relation
would imply

j(A)
I(∂Aλ)

∼ 1
λ2

j(A)
J(∂Aλ)

, (13)

i.e. I/λ2 ∼ J . Since J is constant for α > 2, the formula
n = α/(5α−2) would be correct if (I/λ2) were constant as
well. In the inset of Figure 1 we plot the numerical results
for I/λ2 vs λ: for very large λ, I/λ2 ∼ λ−1/3 decreases, but
for λ ≈ 102 it has a maximum. In other words, in the re-
gion of wavelengths which can be reasonably investigated
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Fig. 2. The scaling of the maximal force j(A) (left) and of the
quantity λ′(A) (right), as functions of λ.

with the direct integration of the growth equation, the
quantity I/λ2 is approximately constant, which implies
n ≈ α/(5α − 2).

In order to support the idea that the origin of the
effective exponents is indeed the maximum in I/λ2, in
Figure 2 we also plot the two other relevant quantities
appearing in equation (10), j(A) and dλ/dA: none of them
has any special behaviour for small λ.

4 Conclusions

In this short note we have reconsidered a class of con-
served (2) and non-conserved (3) growth models, in the
light of recent theoretical results [6]. These models, de-
fined by the current (6) and termed α−models, all display
perpetual coarsening, λ(t) ∼ tn.

For the non-conserved models, n depends on α accord-
ing to formula (8): therefore, the theory based on the phase
diffusion coefficient [6] confirm previous results [8] based
on a Langer-type approach [9]. For the conserved models,
recent theoretical results [6] give a constant coarsening
exponent, n = 1

4 , at odds with our previous numerical re-
sults, equation (9). We have explained the effective expo-
nent n = α/(5α− 2) as a finite-time exponent, whose ap-
pearance is due to the fact that the quantity I/λ2, instead
of decreasing as a power law, is approximately constant for
not too large λ (see Fig. 1, inset). This constant behaviour
is equivalent to assume that the operator (−∂xx) in equa-
tion (2) can be effectively replaced by 1/λ2, when n is
evaluated.

It is worth noting that the result n = 1
4 for the con-

served models was firstly found by Golubović [12] using
some dimensional arguments (see Sect. 7 of Ref. [8] for
more details). The main problem with this approach is
that it also gives a constant coarsening exponent n = 1

2 for
the non-conserved models, which is wrong. The reason of
this failure is clear from Section 2.2, because dimensional
analysis can be valid only if the A−dependent asymptotic
contribution to the integral quantities λ, I, J outnumbers
the contribution from the small u region. This is not the
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case for the non-conserved models and α > 2: exactly the
class of equations where dimensional analysis fails.

Similar arguments can be used to understand the fail-
ure of the ansatz (−∂xx → 1/λ2), which has clearly to
do with dimensional analysis. The weak point is that this
ansatz is applied along with the correct results for the
non-conserved models, where dimensional analysis works
for α < 2 only: therefore, the ansatz gives the final correct
result (for the conserved models) for α < 2 only.

It is also worth stressing that a more rigorous applica-
tion of dimensional arguments [13] to the conserved mod-
els gives an inequality, n ≤ 1

4 , which does not allow to
discriminate between n = 1

4 and n = α/(5α − 2).
We conclude with some remarks on the possibility to

access numerically the asymptotic scaling region reported
in Figure 1 for the conserved model with α = 3. We are
going to argue that a direct integration of equation (1)
would require astronomically long CPU times.

Since the correct scaling sets in for λ > 2000
(see Fig. 1), it would be necessary to consider a chain of
length L ∼ 104 and to integrate for times t ∼ 1015. In
our numerical results published in reference [8], we inte-
grated equation (1) using a time-splitting pseudo-spectral
code, using a spatial resolution ∆x = 0.25, a time step
∆t = 0.05 and a chain of length L = 1024. Employing
an “Opteron AMD64 Dual Core” machine with a 2 GHz
clock, we are currently able to reach λ ≈ 102 and
t ≈ 108 with 20 hours of CPU time. This means that
in order to simulate a chain of length L ∼ 104 for a
time t ∼ 1015, we would require (on the same machine)
a CPU time of 10 × 107 × 20 hours ≈ 2 × 105 years.
The simulation time can be reduced to some extent by
lowering the precision of the integration. In particu-
lar, we have verified that results of quality comparable

with those reported in [8] can still be obtained by increas-
ing the time step up to four times, while the integration
scheme becomes rapidly unstable by considering a coarser
space grid. As a matter of fact, we cannot expect to lower
the CPU time more than a factor ∼10, which renders still
unfeasible the observation of the asymptotic exponents
(by the way, even a lowering up to a factor 105 would
make it unfeasible).
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